When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Absolute value - Wikipedia

    en.wikipedia.org/wiki/Absolute_value

    The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [14] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...

  3. Sign function - Wikipedia

    en.wikipedia.org/wiki/Sign_function

    For example, the absolute value function is identical to in the region >, whose derivative is the constant value +1, which equals the value of ⁡ there. Because the absolute value is a convex function , there is at least one subderivative at every point, including at the origin.

  4. Weak derivative - Wikipedia

    en.wikipedia.org/wiki/Weak_derivative

    The absolute value function : +, = | |, which is not differentiable at = has a weak derivative : known as the sign function, and given by () = {>; =; < This is not the only weak derivative for u: any w that is equal to v almost everywhere is also a weak derivative for u.

  5. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    The graph of the absolute value function. If differentiability fails at an interior point of the interval, the conclusion of Rolle's theorem may not hold. Consider the absolute value function = | |, [,]. Then f (−1) = f (1), but there is no c between −1 and 1 for which the f ′(c) is zero.

  6. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    The absolute value function is continuous (i.e. it has no gaps). It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable.

  7. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    A function of a real variable is differentiable at a point of its domain, if its domain contains an open interval containing ⁠ ⁠, and the limit = (+) exists. [2] This means that, for every positive real number ⁠ ⁠, there exists a positive real number such that, for every such that | | < and then (+) is defined, and | (+) | <, where the vertical bars denote the absolute value.

  8. Absolute value (algebra) - Wikipedia

    en.wikipedia.org/wiki/Absolute_value_(algebra)

    The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).

  9. Subderivative - Wikipedia

    en.wikipedia.org/wiki/Subderivative

    Rigorously, a subderivative of a convex function : at a point in the open interval is a real number such that () for all .By the converse of the mean value theorem, the set of subderivatives at for a convex function is a nonempty closed interval [,], where and are the one-sided limits = (), = + ().