Search results
Results From The WOW.Com Content Network
The plot for vapor is a transformation of data Synthetic spectrum for gas mixture ' Pure H 2 O ' (296K, 1 atm) retrieved from Hitran on the Web Information System. [6] Liquid water absorption spectrum across a wide wavelength range [missing source] The absorption of electromagnetic radiation by water depends on the state of the water.
The Froude–Krylov force is the force introduced by the unsteady pressure field generated by undisturbed waves. The Froude–Krylov force does, together with the diffraction force, make up the total non-viscous forces acting on a floating body in regular waves. The diffraction force is due to the floating body disturbing the waves.
Cherenkov radiation glowing in the core of the Advanced Test Reactor at Idaho National Laboratory. Cherenkov radiation (/ tʃ ə ˈ r ɛ ŋ k ɒ f / [1]) is electromagnetic radiation emitted when a charged particle (such as an electron) passes through a dielectric medium (such as distilled water) at a speed greater than the phase velocity (speed of propagation of a wavefront in a medium) of ...
The vibrational and rotational excited states of greenhouse gases that emit thermal infrared radiation are in LTE up to about 60 km. [7] Radiative transfer calculations show negligible change (0.2%) due to absorption and emission above about 50 km. Schwarzschild's equation therefore is appropriate for most problems involving thermal infrared in ...
The amplitude of this bound long wave varies with the square of the wave height, and is only significant in shallow water; Wave–current interaction – in varying mean-flow fields, the energy exchanges between the waves and the mean flow, as well as the mean-flow forcing, can be modeled by means of the radiation stress.
A diagram of the electromagnetic spectrum, showing various properties across the range of frequencies and wavelengths. The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band.
Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by shallow-water phase velocity √ gh as a function of relative depth h / λ. Blue lines (A): phase velocity; Red lines (B): group velocity; Black dashed line (C): phase and group velocity √ gh valid in shallow water.
The Poynting vector for a wave is a vector whose component in any direction is the irradiance (power per unit area) of that wave on a surface perpendicular to that direction. For a plane sinusoidal wave the Poynting vector is 1 / 2 Re{E × H ∗}, where E and H are due only to the