Search results
Results From The WOW.Com Content Network
The sum of the reciprocals of the powerful numbers is close to 1.9436 . [4] The reciprocals of the factorials sum to the transcendental number e (one of two constants called "Euler's number"). The sum of the reciprocals of the square numbers (the Basel problem) is the transcendental number π 2 / 6 , or ζ(2) where ζ is the Riemann zeta ...
While the partial sums of the reciprocals of the primes eventually exceed any integer value, they never equal an integer. One proof [6] is by induction: The first partial sum is 1 / 2 , which has the form odd / even . If the n th partial sum (for n ≥ 1) has the form odd / even , then the (n + 1) st sum is
A prime p (where p ≠ 2, 5 when working in base 10) is called unique if there is no other prime q such that the period length of the decimal expansion of its reciprocal, 1/p, is equal to the period length of the reciprocal of q, 1/q. [8]
The harmonic number with = ⌊ ⌋ (red line) with its asymptotic limit + (blue line) where is the Euler–Mascheroni constant.. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers: [1] = + + + + = =.
The depleted harmonic series where all of the terms in which the digit 9 appears anywhere in the denominator are removed can be shown to converge to the value 22.92067 66192 64150 34816.... [44] In fact, when all the terms containing any particular string of digits (in any base) are removed, the series converges. [45]
In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials () with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irreducible polynomial () = + + splits into linear terms when reduced mod .
The harmonic mean is the reciprocal of the arithmetic mean of the reciprocals of the numbers, that is, the generalized f-mean with () =. For example, the harmonic mean of 1, 4, and 4 is For example, the harmonic mean of 1, 4, and 4 is
The convergence of the sum of reciprocals of twin primes follows from bounds on the density of the sequence of twin primes. Let π 2 ( x ) {\displaystyle \pi _{2}(x)} denote the number of primes p ≤ x for which p + 2 is also prime (i.e. π 2 ( x ) {\displaystyle \pi _{2}(x)} is the number of twin primes with the smaller at most x ).