When.com Web Search

  1. Ads

    related to: how to find principal reduction point formula in statistics example answer

Search results

  1. Results From The WOW.Com Content Network
  2. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  3. Integration by reduction formulae - Wikipedia

    en.wikipedia.org/wiki/Integration_by_reduction...

    The main idea is to express an integral involving an integer parameter (e.g. power) of a function, represented by I n, in terms of an integral that involves a lower value of the parameter (lower power) of that function, for example I n-1 or I n-2. This makes the reduction formula a type of recurrence relation. In other words, the reduction ...

  4. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). PCR is a form of reduced rank regression . [ 1 ] More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model .

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In the more general multiple regression model, there are independent variables: = + + + +, where is the -th observation on the -th independent variable.If the first independent variable takes the value 1 for all , =, then is called the regression intercept.

  6. L1-norm principal component analysis - Wikipedia

    en.wikipedia.org/wiki/L1-norm_principal...

    In ()-(), L1-norm ‖ ‖ returns the sum of the absolute entries of its argument and L2-norm ‖ ‖ returns the sum of the squared entries of its argument.If one substitutes ‖ ‖ in by the Frobenius/L2-norm ‖ ‖, then the problem becomes standard PCA and it is solved by the matrix that contains the dominant singular vectors of (i.e., the singular vectors that correspond to the highest ...

  7. Partial least squares regression - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares...

    Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression; [1] instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...

  8. Functional principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Functional_principal...

    Functional principal component analysis (FPCA) is a statistical method for investigating the dominant modes of variation of functional data. Using this method, a random function is represented in the eigenbasis, which is an orthonormal basis of the Hilbert space L 2 that consists of the eigenfunctions of the autocovariance operator .

  9. Shrinkage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Shrinkage_(statistics)

    In statistics, shrinkage is the reduction in the effects of sampling variation. In regression analysis, a fitted relationship appears to perform less well on a new data set than on the data set used for fitting. [1] In particular the value of the coefficient of determination 'shrinks'.