Search results
Results From The WOW.Com Content Network
The synthesis and processing of polyacetylene films affects the properties. Increasing the catalyst ratio creates thicker films with a greater draw ratio, allowing them to be stretched further. [8] Lower catalyst loadings leads to the formation of dark red gels, which can be converted to films by cutting and pressing between glass plates. [20]
There are many properties of polymeric materials that influence their mechanical properties. As the degree of polymerization goes up, so does the polymer’s strength, as a longer chains have high Van der Waals interactions and chain entanglement. Long polymers can entangle, which leads to a subsequent increase in bulk modulus. [11]
Methods include emulsion polymerization, solution polymerization, suspension polymerization, and precipitation polymerization. Although the polymer dispersity and molecular weight may be improved, these methods may introduce additional processing requirements to isolate the product from a solvent.
Bulk polymerization is carried out in the absence of any solvent or dispersant and is thus the simplest in terms of formulation. It is used for most step-growth polymers and many types of chain-growth polymers. In the case of chain-growth reactions, which are generally exothermic, the heat evolved may cause the reaction to become too vigorous ...
Radical polymerization is a key synthesis route for obtaining a wide variety of different polymers and materials composites. The relatively non-specific nature of radical chemical interactions makes this one of the most versatile forms of polymerization available and allows facile reactions of polymeric radical chain ends and other chemicals or ...
Chain polymerization products are widely used in many aspects of life, including electronic devices, food packaging, catalyst carriers, medical materials, etc. At present, the world's highest yielding polymers such as polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), etc. can be obtained by chain polymerization.
It may be noted that, for polymers, the strain is commonly expressed as a “draw ratio”, rather than a strain: in this case, extrapolation of the tangent is carried out to a draw ratio of zero, rather than a strain of -1. Graphical construction indicating criteria for neck formation and neck stabilization.
In polymer chemistry, ring-opening metathesis polymerization (ROMP) is a type of chain-growth polymerization involving olefin metathesis. [1] The reaction is driven by relieving ring strain in cyclic olefins. [2] A variety of heterogeneous and homogeneous catalysts have been developed for different polymers and mechanisms. [3]