Search results
Results From The WOW.Com Content Network
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
Thus, the second partial derivative test indicates that f(x, y) has saddle points at (0, −1) and (1, −1) and has a local maximum at (,) since = <. At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point.
The higher-order derivative test or general derivative test is able to determine whether a function's critical points are maxima, minima, or points of inflection for a wider variety of functions than the second-order derivative test. As shown below, the second-derivative test is mathematically identical to the special case of n = 1 in the ...
The covariant derivative incorporates the 4-gradient plus spacetime curvature effects via the Christoffel symbols The strong equivalence principle can be stated as: [ 4 ] : 184 "Any physical law which can be expressed in tensor notation in SR has exactly the same form in a locally inertial frame of a curved spacetime."
The second derivative test consists here of sign restrictions of the determinants of a certain set of submatrices of the bordered Hessian. [11] Intuitively, the m {\displaystyle m} constraints can be thought of as reducing the problem to one with n − m {\displaystyle n-m} free variables.
The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield. Near a strict local maximum in the interior of the domain of a function, the function must be concave; as a partial converse, if the derivative of a strictly concave ...
In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.
Then there is a number c in (a, b) such that the n th derivative of f at c is zero. The red curve is the graph of function with 3 roots in the interval [−3, 2]. Thus its second derivative (graphed in green) also has a root in the same interval.