Search results
Results From The WOW.Com Content Network
Symmetric-key encryption: the same key is used for both encryption and decryption. Symmetric-key algorithms [a] are algorithms for cryptography that use the same cryptographic keys for both the encryption of plaintext and the decryption of ciphertext. The keys may be identical, or there may be a simple transformation to go between the two keys. [1]
d is kept secret as the private key exponent. The public key consists of the modulus n and the public (or encryption) exponent e. The private key consists of the private (or decryption) exponent d, which must be kept secret. p, q, and λ(n) must also be kept secret because they can be used to calculate d.
Symmetric-key cryptography, where a single key is used for both encryption and decryption. Symmetric-key cryptography refers to encryption methods in which both the sender and receiver share the same key (or, less commonly, in which their keys are different, but related in an easily computable way).
See traffic encryption key. symmetric key - a key that is used both to encrypt and decrypt a message. Symmetric keys are typically used with a cipher and must be kept secret to maintain confidentiality. traffic encryption key (TEK)/data encryption key (DEK) - a symmetric key that is used to encrypt messages. TEKs are typically changed ...
Public-key cryptosystems use a public key for encryption and a private key for decryption. Diffie–Hellman key exchange; RSA encryption; Rabin cryptosystem; Schnorr signature; ElGamal encryption; Elliptic-curve cryptography; Lattice-based cryptography; McEliece cryptosystem; Multivariate cryptography; Isogeny-based cryptography
Symmetric-key algorithms use a single shared key; keeping data secret requires keeping this key secret. Public-key algorithms use a public key and a private key. The public key is made available to anyone (often by means of a digital certificate). A sender encrypts data with the receiver's public key; only the holder of the private key can ...
Key exchange (also key establishment) is a method in cryptography by which cryptographic keys are exchanged between two parties, allowing use of a cryptographic algorithm. In the Diffie–Hellman key exchange scheme, each party generates a public/private key pair and distributes the public key.
Multiple encryption is the process of encrypting an already encrypted message one or more times, either using the same or a different algorithm. It is also known as cascade encryption, cascade ciphering, multiple encryption, and superencipherment. Superencryption refers to the outer-level encryption of a multiple encryption.