When.com Web Search

  1. Ad

    related to: importance of combined shapes in real life math problems examples pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Many of these problems are easily solvable provided that other geometric transformations are allowed; for example, neusis construction can be used to solve the former two problems. In terms of algebra , a length is constructible if and only if it represents a constructible number , and an angle is constructible if and only if its cosine is a ...

  3. Moving sofa problem - Wikipedia

    en.wikipedia.org/wiki/Moving_sofa_problem

    In mathematics, the moving sofa problem or sofa problem is a two-dimensional idealization of real-life furniture-moving problems and asks for the rigid two-dimensional shape of the largest area that can be maneuvered through an L-shaped planar region with legs of unit width. [1] The area thus obtained is referred to as the sofa constant.

  4. Multiple representations (mathematics education) - Wikipedia

    en.wikipedia.org/wiki/Multiple_representations...

    The use of multiple representations supports and requires tasks that involve decision-making and other problem-solving skills. [2] [3] [4] The choice of which representation to use, the task of making representations given other representations, and the understanding of how changes in one representation affect others are examples of such mathematically sophisticated activities.

  5. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    Packing of irregular objects is a problem not lending itself well to closed form solutions; however, the applicability to practical environmental science is quite important. For example, irregularly shaped soil particles pack differently as the sizes and shapes vary, leading to important outcomes for plant species to adapt root formations and ...

  6. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    Unlike the case of the other Platonic solids, all the vertices of a regular tetrahedron are equidistant from each other (they are the only possible arrangement of four equidistant points in 3-dimensional space, for an example in electromagnetism cf. Thomson problem). The above embedding divides the cube into five tetrahedra, one of which is ...

  7. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis and discrete mathematics. [131] It has close connections to convex analysis , optimization and functional analysis and important applications in number theory .

  8. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    Geometrically, one studies the Euclidean plane (two dimensions) and Euclidean space. As taught in school books, analytic geometry can be explained more simply: it is concerned with defining and representing geometric shapes in a numerical way and extracting numerical information from shapes' numerical definitions and representations.

  9. Manipulative (mathematics education) - Wikipedia

    en.wikipedia.org/wiki/Manipulative_(mathematics...

    For example, three green triangles make a red trapezoid; two red trapezoids make up a yellow hexagon; a blue rhombus is made up of two green triangles; three blue rhombi make a yellow hexagon, etc. Playing with the shapes in these ways help children develop a spatial understanding of how shapes are composed and decomposed, an essential ...