Search results
Results From The WOW.Com Content Network
A useful tool for dealing with high frequency magnetic effects is the complex permeability. While at low frequencies in a linear material the magnetic field and the auxiliary magnetic field are simply proportional to each other through some scalar permeability, at high frequencies these quantities will react to each other with some lag time. [36]
The high permeability of mu-metal provides a low reluctance path for magnetic flux, leading to its use in magnetic shields against static or slowly varying magnetic fields. Magnetic shielding made with high-permeability alloys like mu-metal works not by blocking magnetic fields but by providing a path for the magnetic field lines around the ...
[1] [2] [15] [16] A core can increase the magnetic field to thousands of times the strength of the field of the coil alone, due to the high magnetic permeability of the material. [ 1 ] [ 2 ] Not all electromagnets use cores, so this is called a ferromagnetic-core or iron-core electromagnet.
They also have high magnetic permeability. These so-called ceramic magnets are cheap, and are widely used in household products such as refrigerator magnets . The maximum magnetic field B is about 0.35 tesla and the magnetic field strength H is about 30–160 kiloampere turns per meter (400–2000 oersteds ). [ 33 ]
Strip of permalloy. Permalloy is a nickel–iron magnetic alloy, with about 80% nickel and 20% iron content.Invented in 1914 by physicist Gustav Elmen at Bell Telephone Laboratories, [1] it is notable for its very high magnetic permeability, which makes it useful as a magnetic core material in electrical and electronic equipment, and also in magnetic shielding to block magnetic fields.
For example, high permeability iron alloys used in transformers reach magnetic saturation at 1.6–2.2 teslas (T), [4] whereas ferrites saturate at 0.2–0.5 T. [5] Some amorphous alloys saturate at 1.2–1.3 T. [6] Mu-metal saturates at around 0.8 T. [7] [8] Due to saturation, the magnetic permeability μ f of a ferromagnetic substance reaches ...
Magnetic field (green) created by a current-carrying winding (red) in a typical magnetic core transformer or inductor, with the iron core C forming a closed loop, possibly with air gaps G in it. The drawing shows a section through the core. The purpose of the core is to provide a closed high permeability path for the magnetic field lines.
In other words, the easy axis is an energetically favorable direction of spontaneous magnetization. Because the two opposite directions along an easy axis are usually equivalently easy to magnetize along, the actual direction of magnetization can just as easily settle into either direction, which is an example of spontaneous symmetry breaking.