Search results
Results From The WOW.Com Content Network
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
Matrix pencils play an important role in numerical linear algebra.The problem of finding the eigenvalues of a pencil is called the generalized eigenvalue problem.The most popular algorithm for this task is the QZ algorithm, which is an implicit version of the QR algorithm to solve the eigenvalue problem = without inverting the matrix (which is impossible when is singular, or numerically ...
In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix, the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, =.
The Julia package NEP-PACK contains many implementations of various numerical methods for nonlinear eigenvalue problems, as well as many benchmark problems. [12] The review paper of Güttel & Tisseur [1] contains MATLAB code snippets implementing basic Newton-type methods and contour integration methods for nonlinear eigenproblems.
This solution of the vibrating drum problem is, at any point in time, an eigenfunction of the Laplace operator on a disk.. In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue.
If the trial wave function is known to be orthogonal to the ground state, then it will provide a boundary for the energy of some excited state. The Ritz ansatz function is a linear combination of N known basis functions { Ψ i } {\displaystyle \left\lbrace \Psi _{i}\right\rbrace } , parametrized by unknown coefficients: Ψ = ∑ i = 1 N c i Ψ ...
Rayleigh quotient iteration is an eigenvalue algorithm which extends the idea of the inverse iteration by using the Rayleigh quotient to obtain increasingly accurate eigenvalue estimates. Rayleigh quotient iteration is an iterative method, that is, it delivers a sequence of approximate solutions that converges to a true solution in the limit ...
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.