When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    In 2021, a very simple NN architecture combining two deep MLPs with skip connections and layer normalizations was designed and called MLP-Mixer; its realizations featuring 19 to 431 millions of parameters were shown to be comparable to vision transformers of similar size on ImageNet and similar image classification tasks.

  3. MNIST database - Wikipedia

    en.wikipedia.org/wiki/MNIST_database

    Previously, NIST released two datasets: Special Database 1 (NIST Test Data I, or SD-1); and Special Database 3 (or SD-2). They were released on two CD-ROMs. They were released on two CD-ROMs. SD-1 was the test set, and it contained digits written by high school students, 58,646 images written by 500 different writers.

  4. Connected-component labeling - Wikipedia

    en.wikipedia.org/wiki/Connected-component_labeling

    Iterate through each element of the data by column, then by row; If the element is not the background Relabel the element with the lowest equivalent label; Here, the background is a classification, specific to the data, used to distinguish salient elements from the foreground. If the background variable is omitted, then the two-pass algorithm ...

  5. Benford's law - Wikipedia

    en.wikipedia.org/wiki/Benford's_law

    This is an accepted version of this page This is the latest accepted revision, reviewed on 17 January 2025. Observation that in many real-life datasets, the leading digit is likely to be small For the unrelated adage, see Benford's law of controversy. The distribution of first digits, according to Benford's law. Each bar represents a digit, and the height of the bar is the percentage of ...

  6. Single instruction, multiple data - Wikipedia

    en.wikipedia.org/wiki/Single_instruction...

    For one the data is understood to be in blocks, and a number of values can be loaded all at once. Instead of a series of instructions saying "retrieve this pixel, now retrieve the next pixel", a SIMD processor will have a single instruction that effectively says "retrieve n pixels" (where n is a number that varies from design to design).

  7. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    In particular see "Chapter 4: Artificial Neural Networks" (in particular pp. 96–97) where Mitchell uses the word "logistic function" and the "sigmoid function" synonymously – this function he also calls the "squashing function" – and the sigmoid (aka logistic) function is used to compress the outputs of the "neurons" in multi-layer neural ...

  8. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers.A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. [1]

  9. Nonlinear dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_dimensionality...

    Each data point serves as a node on the graph and connectivity between nodes is governed by the proximity of neighboring points (using e.g. the k-nearest neighbor algorithm). The graph thus generated can be considered as a discrete approximation of the low-dimensional manifold in the high-dimensional space.