Ad
related to: how to find a finite geometry
Search results
Results From The WOW.Com Content Network
A finite geometry is any geometric system that has only a finite number of points. The familiar Euclidean geometry is not finite, because a Euclidean line contains infinitely many points. A geometry based on the graphics displayed on a computer screen, where the pixels are considered to be the points, would be a finite geometry.
Although it may be embedded in two dimensions, the Desargues configuration has a very simple construction in three dimensions: for any configuration of five planes in general position in Euclidean space, the ten points where three planes meet and the ten lines formed by the intersection of two of the planes together form an instance of the configuration. [2]
In finite geometry, the Fano plane (named after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point.
The types of finite geometry covered by the book include partial linear spaces, linear spaces, affine spaces and affine planes, projective spaces and projective planes, polar spaces, generalized quadrangles, and partial geometries. [1]
Mathematicians can now explain how many people would need to be invited to a party so at least 4 people always know one another. It only took 90 years to solve.
This famous incidence geometry was developed by the Italian mathematician Gino Fano. In his work [9] on proving the independence of the set of axioms for projective n-space that he developed, [10] he produced a finite three-dimensional space with 15 points, 35 lines and 15 planes, in which each line had only three points on it. [11]
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements.As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules.
Galois geometry (named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or Galois field). [1] More narrowly, a Galois geometry may be defined as a projective space over a finite field. [2]