Search results
Results From The WOW.Com Content Network
For example, the teardrop orbifold has Euler characteristic 1 + 1 / p , where p is a prime number corresponding to the cone angle 2 π / p . The concept of Euler characteristic of the reduced homology of a bounded finite poset is another generalization, important in combinatorics. A poset is "bounded" if it has smallest and ...
Euler is regarded as arguably the most prolific contributor in the history of mathematics and science, and the greatest mathematician of the 18th century. [12] [11] His 866 publications and his correspondence are being collected in the Opera Omnia Leonhard Euler which, when completed, will consist of 81 quartos.
Map of Königsberg in Euler's time showing the actual layout of the seven bridges, highlighting the river Pregel and the bridges. The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler, in 1736, [1] laid the foundations of graph theory and prefigured the idea of topology. [2]
Euler invented the calculus of variations including its most well-known result, the Euler–Lagrange equation. Euler also pioneered the use of analytic methods to solve number theory problems. In doing so, he united two disparate branches of mathematics and introduced a new field of study, analytic number theory.
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.
Euler's formula relating the number of edges, vertices, and faces of a convex polyhedron was studied and generalized by Cauchy [21] and L'Huilier, [22] and represents the beginning of the branch of mathematics known as topology. More than one century after Euler's paper on the bridges of Königsberg and while Listing was introducing the concept ...
Leonhard Euler is credited of introducing both specifications in two publications written in 1755 [3] and 1759. [4] [5] Joseph-Louis Lagrange studied the equations of motion in connection to the principle of least action in 1760, later in a treaty of fluid mechanics in 1781, [6] and thirdly in his book Mécanique analytique. [5]
The odd–even condition follows from Euler's formula. Any simplicial generalized homology sphere is an Eulerian lattice. Let L be a regular cell complex such that | L | is a manifold with the same Euler characteristic as the sphere of the same dimension (this condition is vacuous if the dimension is odd).