When.com Web Search

  1. Ad

    related to: formula for areal velocity calculus calculator with solution

Search results

  1. Results From The WOW.Com Content Network
  2. Areal velocity - Wikipedia

    en.wikipedia.org/wiki/Areal_velocity

    In classical mechanics, areal velocity (also called sector velocity or sectorial velocity) is a pseudovector whose length equals the rate of change at which area is swept out by a particle as it moves along a curve. It has SI units of square meters per second (m 2 /s) and dimension of square length per time L 2 T −1.

  3. Classical central-force problem - Wikipedia

    en.wikipedia.org/wiki/Classical_central-force...

    Since the speed v is likewise unchanging, the areal velocity 1 ⁄ 2 vr ⊥ is a constant of motion; the particle sweeps out equal areas in equal times. The area A of a circular sector equals 1 ⁄ 2 r 2 φ = 1 ⁄ 2 r 2 ωt = 1 ⁄ 2 r v φ t. Hence, the areal velocity dA/dt equals 1 ⁄ 2 r v φ = 1 ⁄ 2 h.

  4. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    Newton illustrates his formula with three examples. In the first two, the central force is a power law, F(r) = r n−3, so C(r) is proportional to r n. The formula above indicates that the angular motion is multiplied by a factor k = 1/ √ n, so that the apsidal angle α equals 180°/ √ n.

  5. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω) relative to F'. The situation is similar for relative ...

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. Verlet integration - Wikipedia

    en.wikipedia.org/wiki/Verlet_integration

    Verlet integration (French pronunciation:) is a numerical method used to integrate Newton's equations of motion. [1] It is frequently used to calculate trajectories of particles in molecular dynamics simulations and computer graphics.

  8. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    It was derived by Johannes Kepler in 1609 in Chapter 60 of his Astronomia nova, [1] [2] and in book V of his Epitome of Copernican Astronomy (1621) Kepler proposed an iterative solution to the equation. [3] [4] This equation and its solution, however, first appeared in a 9th-century work by Habash al-Hasib al-Marwazi, which dealt with problems ...

  9. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The same (blue) area is swept out in a fixed time period. The green arrow is velocity. The purple arrow directed towards the Sun is the acceleration. The other two purple arrows are acceleration components parallel and perpendicular to the velocity. The orbital radius and angular velocity of the planet in the elliptical orbit will vary.