Ads
related to: how to dilute 35% h2o2 solution
Search results
Results From The WOW.Com Content Network
Hydrogen peroxide is a chemical compound with the formula H 2 O 2.In its pure form, it is a very pale blue [5] liquid that is slightly more viscous than water.It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%–6% by weight) in water for consumer use and in higher concentrations for industrial use.
Hydrogen peroxide works best as a propellant in extremely high concentrations (roughly over 70%). Although any concentration of peroxide will generate some hot gas (oxygen plus some steam), at concentrations above approximately 67%, the heat of decomposing hydrogen peroxide becomes large enough to completely vaporize all the liquid at standard pressure.
The heat of dilution can be defined from two perspectives: the differential heat and the integral heat. The differential heat of dilution is viewed on a micro scale, which is associated with the process in which a small amount of solvent is added to a large quantity of solution. The molar differential heat of dilution is thus defined as the enthalpy
At 15.6 °C (60.1 °F), the density of a saturated solution is 0.88 g/ml; it contains 35.6% ammonia by mass, 308 grams of ammonia per litre of solution, and has a molarity of approximately 18 mol/L. At higher temperatures, the molarity of the saturated solution decreases and the density increases. [8]
A superscript attached to the ∞ symbol for a property of a solution denotes the property in the limit of infinite dilution." [1] One important parameter of a solution is the concentration, which is a measure of the amount of solute in a given amount of solution or solvent. The term "aqueous solution" is used when one of the solvents is water. [2]
Then, a catalyst, often around 10 ml potassium iodide solution or catalase from baker's yeast, is added to make the hydrogen peroxide decompose very quickly. Hydrogen peroxide breaks down into oxygen and water. As a small amount of hydrogen peroxide generates a large volume of oxygen, the oxygen quickly pushes out of the container. [6]
VHP is produced from a solution of liquid H 2 O 2 and water, by generators specifically designed for the purpose. These generators initially dehumidify the ambient air, then produce VHP by passing aqueous hydrogen peroxide over a vaporizer, and circulate the vapor at a programmed concentration in the air, typically from 140 ppm to 1400 ppm, depending on the infectious agent to be cleared. [6]
Hydrogen peroxide (H 2 O 2) can be used as HOCl scavenger whose byproducts do not interfere in the Pinnick oxidation reaction: HOCl + H 2 O 2 → HCl + O 2 + H 2 O. In a weakly acidic condition, fairly concentrated (35%) H 2 O 2 solution undergoes a rapid oxidative reaction with no competitive reduction reaction of HClO 2 to form HOCl. HClO 2 ...