Search results
Results From The WOW.Com Content Network
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
1.0 dam 3 (35,000 cu ft) cubic metre: m3 m 3: US spelling: cubic meter one kilolitre 1.0 m 3 (35 cu ft) cubic decimetre: dm3 dm 3: US spelling: cubic decimeter one litre 1.0 dm 3 (61 cu in) cubic centimetre: cm3 cm 3: US spelling: cubic centimeter one millilitre 1.0 cm 3 (0.061 cu in) cc cc cubic millimetre: mm3 mm 3: US spelling: cubic millimeter
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension General heat/thermal capacity C = / J⋅K −1: ML 2 T −2 Θ −1: Heat capacity (isobaric)
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Hence 1 L ≡ 0.001 m 3 ≡ 1000 cm 3; and 1 m 3 (i.e. a cubic metre, which is the SI unit for volume) is exactly 1000 L. From 1901 to 1964, the litre was defined as the volume of one kilogram of pure water at maximum density (+3.98 °C) [ citation needed ] and standard pressure .
the volume of a cube of side length one decimetre (0.1 m) equal to a litre 1 dm 3 = 0.001 m 3 = 1 L (also known as DCM (=Deci Cubic Meter) in Rubber compound processing) Cubic centimetre [5] the volume of a cube of side length one centimetre (0.01 m) equal to a millilitre 1 cm 3 = 0.000 001 m 3 = 10 −6 m 3 = 1 mL Cubic millimetre
1 elle = 27 Rhynland inches [3] = 2.25 Rhynland feet [0.685 m]. [4] 1 English yard = 34.85 (≈35) ... and the British used the Imperial gallon [4.54 liters]. When ...
A centimetre of water [1] is a unit of pressure. It may be defined as the pressure exerted by a column of water of 1 cm in height at 4 °C (temperature of maximum density) at the standard acceleration of gravity, so that 1 cmH 2 O (4°C) = 999.9720 kg/m 3 × 9.80665 m/s 2 × 1 cm = 98.063754138 Pa ≈ 98.0638 Pa, but conventionally a nominal maximum water density of 1000 kg/m 3 is used, giving ...