Search results
Results From The WOW.Com Content Network
In mathematics, the definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} is the area of the region in the xy -plane bounded by the graph of f , the x -axis, and the lines x = a and x = b , such that area above the x -axis adds to the total, and that below the x -axis subtracts from the total.
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
The rectangular region at the bottom of the body is the domain of integration, while the surface is the graph of the two-variable function to be integrated. In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).
It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.
In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem , it is a very good approximation to the prime-counting function , which is defined as the number of prime numbers ...
In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration. Integrals involving only hyperbolic sine functions = ...
The following is a list of integrals (antiderivative functions) of trigonometric functions.For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions.
These reduction formulas can be used for integrands having integer and/or fractional exponents. Special cases of these reductions formulas can be used for integrands of the form ( a + b x n + c x 2 n ) p {\displaystyle \left(a+b\,x^{n}+c\,x^{2n}\right)^{p}} when b 2 − 4 a c = 0 {\displaystyle b^{2}-4\,a\,c=0} by setting m to 0.