When.com Web Search

  1. Ads

    related to: absolute value calculator number line math definition worksheets 5th class

Search results

  1. Results From The WOW.Com Content Network
  2. Absolute value - Wikipedia

    en.wikipedia.org/wiki/Absolute_value

    The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces.

  3. Number line - Wikipedia

    en.wikipedia.org/wiki/Number_line

    The order of the natural numbers shown on the number line. A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin point representing the number zero and evenly spaced marks in either direction representing integers, imagined to extend infinitely.

  4. Absolute value (algebra) - Wikipedia

    en.wikipedia.org/wiki/Absolute_value_(algebra)

    The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).

  5. Addition - Wikipedia

    en.wikipedia.org/wiki/Addition

    A number-line visualization of the algebraic addition 2 + 4 = 6. A "jump" that has a distance of 2 followed by another that is long as 4, is the same as a translation by 6. A number-line visualization of the unary addition 2 + 4 = 6. A translation by 4 is equivalent to four translations by 1.

  6. Archimedean property - Wikipedia

    en.wikipedia.org/wiki/Archimedean_property

    The field of the rational numbers endowed with the p-adic metric and the p-adic number fields which are the completions, do not have the Archimedean property as fields with absolute values. All Archimedean valued fields are isometrically isomorphic to a subfield of the complex numbers with a power of the usual absolute value. [6]

  7. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    When two sets, ⁠ ⁠ and ⁠ ⁠, have the same cardinality, it is usually written as | | = | |; however, if referring to the cardinal number of an individual set , it is simply denoted | |, with a vertical bar on each side; [3] this is the same notation as absolute value, and the meaning depends on context.

  8. Ostrowski's theorem - Wikipedia

    en.wikipedia.org/wiki/Ostrowski's_theorem

    In number theory, Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers is equivalent to either the usual real absolute value or a p-adic absolute value. [1]

  9. p-adic valuation - Wikipedia

    en.wikipedia.org/wiki/P-adic_valuation

    The p-adic valuation is a valuation and gives rise to an analogue of the usual absolute value. Whereas the completion of the rational numbers with respect to the usual absolute value results in the real numbers R {\displaystyle \mathbb {R} } , the completion of the rational numbers with respect to the p {\displaystyle p} -adic absolute value ...