Search results
Results From The WOW.Com Content Network
Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining millions or billions of MOS transistors onto a single chip. VLSI began in the 1970s when MOS integrated circuit (metal oxide semiconductor) chips were developed and then widely adopted, enabling complex semiconductor and telecommunications technologies.
The Open Verification Methodology (OVM) is a documented methodology with a supporting building-block library for the verification of semiconductor chip designs. The initial version, OVM 1.0, was released in January, 2008, [ 1 ] and regular updates have expanded its functionality.
This process is called formal equivalence checking and is a problem that is studied under the broader area of formal verification. A formal equivalence check can be performed between any two representations of a design: RTL <> netlist, netlist <> netlist or RTL <> RTL, though the latter is rare compared to the first two.
The Universal Verification Methodology (UVM) is a standardized methodology for verifying integrated circuit designs. UVM is derived mainly from OVM (Open Verification Methodology) which was, to a large part, based on the eRM (e Reuse Methodology) for the e verification language developed by Verisity Design in 2001.
Physical verification is a process whereby an integrated circuit layout (IC layout) design is verified via EDA software tools to ensure correct electrical and logical functionality and manufacturability. Verification involves design rule check (DRC), layout versus schematic (LVS), XOR (exclusive OR), antenna checks and electrical rule check ...
Main source of OVL popularity is the fact that it allows introducing high-level verification concepts to the existing or new designs without requiring new language, e.g. a designer having access to Verilog tools does not need a new language to start using property checking with OVL.
A DARPA project which ran concurrently, the VLSI Project, having begun two years earlier in 1978, contributed BSD Unix, the RISC processor, the MOSIS research design fab, and greatly furthered the Mead and Conway revolution in VLSI design automation. By contrast, the VHSIC program was comparatively less cost-effective for the funds invested ...
In ESL design and verification, verification testing is used to prove the integrity of the design of the system or device. Numerous verification techniques may be applied; these test methods are usually modified or customized to better accommodate the system or device under test. Common ESL verification methods include, but are not limited to: [7]