When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Like earlier seq2seq models, the original transformer model used an encoder-decoder architecture. The encoder consists of encoding layers that process all the input tokens together one layer after another, while the decoder consists of decoding layers that iteratively process the encoder's output and the decoder's output tokens so far.

  3. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    Mamba [a] is a deep learning architecture focused on sequence modeling. It was developed by researchers from Carnegie Mellon University and Princeton University to address some limitations of transformer models, especially in processing long sequences. It is based on the Structured State Space sequence (S4) model. [2] [3] [4]

  4. V-model - Wikipedia

    en.wikipedia.org/wiki/V-Model

    The expansion of the model to a dual-Vee concept is treated in reference. [3] As the V-model is publicly available many companies also use it. In project management it is a method comparable to PRINCE2 and describes methods for project management as well as methods for system development. The V-model, while rigid in process, can be very ...

  5. Neural architecture search - Wikipedia

    en.wikipedia.org/wiki/Neural_architecture_search

    Neural architecture search (NAS) [1] [2] is a technique for automating the design of artificial neural networks (ANN), a widely used model in the field of machine learning. NAS has been used to design networks that are on par with or outperform hand-designed architectures.

  6. Adaptive neuro fuzzy inference system - Wikipedia

    en.wikipedia.org/wiki/Adaptive_neuro_fuzzy...

    It is possible to identify two parts in the network structure, namely premise and consequence parts. In more details, the architecture is composed by five layers. The first layer takes the input values and determines the membership functions belonging to them. It is commonly called fuzzification layer.

  7. Model-driven architecture - Wikipedia

    en.wikipedia.org/wiki/Model-driven_architecture

    Model Driven Architecture® (MDA®) "provides an approach for deriving value from models and architecture in support of the full life cycle of physical, organizational and I.T. systems". A model is a (representation of) an abstraction of a system.

  8. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    The Inception v1 architecture is a deep CNN composed of 22 layers. Most of these layers were "Inception modules". The original paper stated that Inception modules are a "logical culmination" of Network in Network [5] and (Arora et al, 2014). [6] Since Inception v1 is deep, it suffered from the vanishing gradient problem.

  9. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.