When.com Web Search

  1. Ad

    related to: 10 facts about buoyancy energy transfer in nature and science pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Convection - Wikipedia

    en.wikipedia.org/wiki/Convection

    Buoyancy occurs due to a difference in indoor-to-outdoor air density resulting from temperature and moisture differences. The greater the thermal difference and the height of the structure, the greater the buoyancy force, and thus the stack effect. The stack effect helps drive natural ventilation and infiltration.

  3. File:Buoyancy shear.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Buoyancy_shear.pdf

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  4. Convection (heat transfer) - Wikipedia

    en.wikipedia.org/wiki/Convection_(Heat_transfer)

    The convection heat transfer mode comprises two mechanism. In addition to energy transfer due to specific molecular motion , energy is transferred by bulk, or macroscopic, motion of the fluid. This motion is associated with the fact that, at any instant, large numbers of molecules are moving collectively or as aggregates.

  5. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    There are some notable similarities in equations for momentum, energy, and mass transfer [7] which can all be transported by diffusion, as illustrated by the following examples: Mass: the spreading and dissipation of odors in air is an example of mass diffusion. Energy: the conduction of heat in a solid material is an example of heat diffusion.

  6. Open ocean convection - Wikipedia

    en.wikipedia.org/wiki/Open_ocean_convection

    Additionally, at some point in time, the sea-surface buoyancy loss is completely offset through lateral buoyancy transfer by baroclinic eddies which are generated at the periphery of the convective regime and thus, the quasi-steady state can be achieved. Once the surface forcing decreases, the vertical heat transfer due to convection abates ...

  7. Richardson number - Wikipedia

    en.wikipedia.org/wiki/Richardson_Number

    If it is much greater than unity, buoyancy is dominant (in the sense that there is insufficient kinetic energy to homogenize the fluids). If the Richardson number is of order unity, then the flow is likely to be buoyancy-driven: the energy of the flow derives from the potential energy in the system originally.

  8. Rayleigh number - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_number

    In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh [1]) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. [2] [3] [4] It characterises the fluid's flow regime: [5] a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow.

  9. Brunt–Väisälä frequency - Wikipedia

    en.wikipedia.org/wiki/Brunt–Väisälä_frequency

    In atmospheric dynamics, oceanography, asteroseismology and geophysics, the Brunt–Väisälä frequency, or buoyancy frequency, is a measure of the stability of a fluid to vertical displacements such as those caused by convection. More precisely it is the frequency at which a vertically displaced parcel will oscillate within a statically ...