Ads
related to: high throughput phenotypic screening pdf fillable form from word doc formatdochub.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
High-throughput phenotypic testing is increasingly important for exploring the biology of bacteria, fungi, yeasts, and animal cell lines such as human cancer cells.Just as DNA microarrays and proteomic technologies have made it possible to assay the expression level of thousands of genes or proteins all a once, phenotype microarrays (PMs) make it possible to quantitatively measure thousands of ...
High-throughput screening (HTS) is a method for scientific discovery especially used in drug discovery and relevant to the fields of biology, materials science [1] and chemistry. [ 2 ] [ 3 ] Using robotics , data processing/control software, liquid handling devices, and sensitive detectors, high-throughput screening allows a researcher to ...
High-content screening where changes in the expression of several proteins can be simultaneously monitored is also often used. [9] [10] High-content imaging of dye-labeled cellular components can also reveal effects of compounds on cell cultures in vitro, distinguishing the phenotypic effects of a broad variety of drugs. [11]
Similar to classical genetic screens in the past, large-scale RNAi surveys success depends on a careful development of phenotypic assays and their interpretation. [9] In Drosophila , RNAi has been applied in cultured cells or in vivo to investigate gene functions and to effect the function of single genes on a genome-wide scale.
Unlike high-content analysis, high-content screening implies a level of throughput which is why the term "screening" differentiates HCS from HCA, which may be high in content but low in throughput. In high content screening, cells are first incubated with the substance and after a period of time, structures and molecular components of the cells ...
The FAST4 format was invented as a derivative of the FASTQ format where each of the 4 bases (A,C,G,T) had separate probabilities stored. It was part of the Swift basecaller, an open source package for primary data analysis on next-gen sequence data "from images to basecalls". The FAST5 format was invented as an extension of the FAST4 format.