Search results
Results From The WOW.Com Content Network
Event (probability theory) – In statistics and probability theory, set of outcomes to which a probability is assigned; Sample space – Set of all possible outcomes or results of a statistical trial or experiment; Probability distribution – Mathematical function for the probability a given outcome occurs in an experiment
A subset of the sample space of a procedure or experiment (i.e. a possible outcome) to which a probability can be assigned. For example, on rolling a die, "getting a three" is an event (with a probability of 1 ⁄ 6 if the die is fair), as is "getting a five or a six" (with a probability of 1 ⁄ 3).
A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%).
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of possible outcomes for an experiment. [1] [2] It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). [3]
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .
In probability theory, an experiment or trial (see below) is any procedure that can be infinitely repeated and has a well-defined set of possible outcomes, known as the sample space. [1] An experiment is said to be random if it has more than one possible outcome, and deterministic if it has only one.
Some treatments of probability assume that the various outcomes of an experiment are always defined so as to be equally likely. [15] For any sample space with N {\displaystyle N} equally likely outcomes, each outcome is assigned the probability 1 N {\displaystyle {\frac {1}{N}}} . [ 16 ]
In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]