When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    List of mathematical functions; List of mathematical identities; List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.

  3. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...

  4. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    A short elementary proof of Pascal's theorem in the case of a circle was found by van Yzeren (1993), based on the proof in (Guggenheimer 1967). This proof proves the theorem for circle and then generalizes it to conics. A short elementary computational proof in the case of the real projective plane was found by Stefanovic (2010).

  5. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    Given three points A, B and C on a circle with center O, the angle ∠ AOC is twice as large as the angle ∠ ABC. A related result to Thales's theorem is the following: If AC is a diameter of a circle, then: If B is inside the circle, then ∠ ABC > 90° If B is on the circle, then ∠ ABC = 90° If B is outside the circle, then ∠ ABC < 90°.

  6. Pseudomathematics - Wikipedia

    en.wikipedia.org/wiki/Pseudomathematics

    Pseudomathematics, or mathematical crankery, is a mathematics-like activity that does not adhere to the framework of rigor of formal mathematical practice. Common areas of pseudomathematics are solutions of problems proved to be unsolvable or recognized as extremely hard by experts, as well as attempts to apply mathematics to non-quantifiable ...

  7. Carlyle circle - Wikipedia

    en.wikipedia.org/wiki/Carlyle_circle

    Draw a horizontal line through the center of the circle. Mark one intersection with the circle as point B. Construct a vertical line through the center. Mark one intersection with the circle as point A. Construct the point M as the midpoint of O and B. Draw a circle centered at M through the point A. This is the Carlyle circle for x 2 + x −

  8. Elementary proof - Wikipedia

    en.wikipedia.org/wiki/Elementary_proof

    Many mathematicians then attempted to construct elementary proofs of the theorem, without success. G. H. Hardy expressed strong reservations; he considered that the essential "depth" of the result ruled out elementary proofs: No elementary proof of the prime number theorem is known, and one may ask whether it is reasonable to expect one.

  9. Ford circle - Wikipedia

    en.wikipedia.org/wiki/Ford_circle

    In mathematics, a Ford circle is a circle in the Euclidean plane, in a family of circles that are all tangent to the -axis at rational points. For each rational number p / q {\displaystyle p/q} , expressed in lowest terms, there is a Ford circle whose center is at the point ( p / q , 1 / ( 2 q 2 ) ) {\displaystyle (p/q,1/(2q^{2}))} and whose ...