Search results
Results From The WOW.Com Content Network
' pain receptor ') is a sensory neuron that responds to damaging or potentially damaging stimuli by sending "possible threat" signals [1] [2] [3] to the spinal cord and the brain. The brain creates the sensation of pain to direct attention to the body part, so the threat can be mitigated; this process is called nociception.
External receptors that respond to stimuli from outside the body are called exteroreceptors. [4] Exteroreceptors include chemoreceptors such as olfactory receptors and taste receptors, photoreceptors (), thermoreceptors (temperature), nociceptors (), hair cells (hearing and balance), and a number of other different mechanoreceptors for touch and proprioception (stretch, distortion and stress).
TRPV1 receptors are found mainly in the nociceptive neurons of the peripheral nervous system, but they have also been described in many other tissues, including the central nervous system. TRPV1 is involved in the transmission and modulation of pain (nociception), as well as the integration of diverse painful stimuli. [14] [15]
Hair follicle receptors called hair root plexuses sense when a hair changes position. Indeed, the most sensitive mechanoreceptors in humans are the hair cells in the cochlea of the inner ear (no relation to the follicular receptors – they are named for the hair-like mechanosensory stereocilia they possess); these receptors transduce sound for ...
The chemoreceptors in the receptor neurons that start the signal cascade are G protein-coupled receptors. The central mechanisms include the convergence of olfactory nerve axons into glomeruli in the olfactory bulb, where the signal is then transmitted to the anterior olfactory nucleus , the piriform cortex , the medial amygdala , and the ...
They can be found at a depth of 900 μm in human fingertips. [4] In hairy skin, Merkel nerve endings are clustered into specialized epithelial structures called "touch domes" or "hair disks". Merkel receptors are also located in the mammary glands. Wherever they are found, the epithelium is arranged to optimize the transfer of pressure to the ...
Cutaneous receptors are at the ends of afferent neurons. works within the capsule. Ion channels are situated near these networks. In sensory transduction, the afferent nerves transmit through a series of synapses in the central nervous system, first in the spinal cord, the ventrobasal portion of the thalamus, and then on to the somatosensory cortex.
The type-I cells transduce the signals from the bloodstream and are innervated by afferent nerve fibers leading back to (in the carotid body) the carotid sinus nerve and then on to the glossopharyngeal nerve and medulla of the brainstem. The aortic body, by contrast, is connected to the medulla via the vagus nerve. [3]