Search results
Results From The WOW.Com Content Network
Extracorporeal membrane oxygenation (ECMO), is a form of extracorporeal life support, providing prolonged cardiac and respiratory support to persons whose heart and lungs are unable to provide an adequate amount of oxygen, gas exchange or blood supply to sustain life.
The patients cannula are attached to an ECMO circuit with blood flow targets of 3Lmin −1 and oxygen blood flow of 3L min −1 commenced. An arterial blood gas is used to assess for successful oxygenation and metabolic improvement following the commencement of ECMO.
Activated clotting time (ACT), also known as activated coagulation time, is a test of coagulation. [1] [2]The ACT test can be used to monitor anticoagulation effects, such as from high-dose heparin before, during, and shortly after procedures that require intense anticoagulant administration, such as cardiac bypass, interventional cardiology, thrombolysis, extra-corporeal membrane oxygenation ...
Normally, Hagen–Poiseuille flow implies not just the relation for the pressure drop, above, but also the full solution for the laminar flow profile, which is parabolic. However, the result for the pressure drop can be extended to turbulent flow by inferring an effective turbulent viscosity in the case of turbulent flow, even though the flow ...
Forced expiratory flow (FEF) is the flow (or speed) of air coming out of the lung during the middle portion of a forced expiration. It can be given at discrete times, generally defined by what fraction of the forced vital capacity (FVC) has been exhaled. The usual discrete intervals are 25%, 50% and 75% (FEF25, FEF50 and FEF75), or 25% and 50% ...
Due to flow reversal, pressure in the pipe falls and the compressor regains its normal stable operation (let at point B) delivering the gas at higher flow rate (˙). But the control valve still corresponds to the flow rate ˙. Due to this compressor's operating conditions will again return to D through points C and S.
A plot of a system's pressure versus volume has long been used to measure the work done by the system and its efficiency. This analysis can be applied to heat engines and pumps, including the heart. A considerable amount of information on cardiac performance can be determined from the pressure vs. volume plot (pressure–volume diagram).
Gas flow can be grouped in four regimes: For Kn≤0.001, flow is continuous, and the Navier–Stokes equations are applicable, from 0.001<Kn<0.1, slip flow occurs, from 0.1≤Kn<10, transitional flow occurs and for Kn≥10, free molecular flow occurs. [6] In free molecular flow, the pressure of the remaining gas can be considered as effectively ...