When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    If R is a UFD, then so is R[X], the ring of polynomials with coefficients in R. Unless R is a field, R[X] is not a principal ideal domain. By induction, a polynomial ring in any number of variables over any UFD (and in particular over a field or over the integers) is a UFD.

  3. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    A polynomial P with coefficients in a UFD R is then said to be primitive if the only elements of R that divide all coefficients of P at once are the invertible elements of R; i.e., the gcd of the coefficients is one. Primitivity statement: If R is a UFD, then the set of primitive polynomials in R[X] is closed under

  4. Polynomial ring - Wikipedia

    en.wikipedia.org/wiki/Polynomial_ring

    The definition of a polynomial ring can be generalised by relaxing the requirement that the algebraic structure R be a field or a ring to the requirement that R only be a semifield or rig; the resulting polynomial structure/extension R[X] is a polynomial rig.

  5. List of number fields with class number one - Wikipedia

    en.wikipedia.org/wiki/List_of_number_fields_with...

    The real root of the polynomial for −23 is the reciprocal of the plastic ratio (negated), while that for −31 is the reciprocal of the supergolden ratio. The polynomials defining the complex cubic fields that have class number one and discriminant greater than −500 are: [ 5 ]

  6. Principal ideal domain - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal_domain

    The previous three statements give the definition of a Dedekind domain, and hence every principal ideal domain is a Dedekind domain. Let A be an integral domain, the following are equivalent. A is a PID. Every prime ideal of A is principal. [13] A is a Dedekind domain that is a UFD.

  7. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    In mathematics and computer algebra the factorization of a polynomial consists of decomposing it into a product of irreducible factors.This decomposition is theoretically possible and is unique for polynomials with coefficients in any field, but rather strong restrictions on the field of the coefficients are needed to allow the computation of the factorization by means of an algorithm.

  8. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    An immediate consequence of the definition is that every principal ideal domain (PID) is a Dedekind domain. In fact a Dedekind domain is a unique factorization domain (UFD) if and only if it is a PID.

  9. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The theorem generalizes to other algebraic structures that are called unique factorization domains and include principal ideal domains, Euclidean domains, and polynomial rings over a field. However, the theorem does not hold for algebraic integers. [6]