When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    A real number x is the least upper bound (or supremum) for S if x is an upper bound for S and x ≤ y for every upper bound y of S. The least-upper-bound property states that any non-empty set of real numbers that has an upper bound must have a least upper bound in real numbers .

  3. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    Then has an upper bound (, for example, or ) but no least upper bound in : If we suppose is the least upper bound, a contradiction is immediately deduced because between any two reals and (including and ) there exists some rational , which itself would have to be the least upper bound (if >) or a member of greater than (if <).

  4. Join and meet - Wikipedia

    en.wikipedia.org/wiki/Join_and_meet

    If (,) is a partially ordered set, such that each pair of elements in has a meet, then indeed = if and only if , since in the latter case indeed is a lower bound of , and since is the greatest lower bound if and only if it is a lower bound. Thus, the partial order defined by the meet in the universal algebra approach coincides with the original ...

  5. Turing degree - Wikipedia

    en.wikipedia.org/wiki/Turing_degree

    The Turing degree of X ⊕ Y is the least upper bound of the degrees of X and Y. Thus is a join-semilattice. The least upper bound of degrees a and b is denoted a ∪ b. It is known that is not a lattice, as there are pairs of degrees with no greatest lower bound.

  6. Second-order logic - Wikipedia

    en.wikipedia.org/wiki/Second-order_logic

    For example, if the domain is the set of all real numbers, one can assert in first-order logic the existence of an additive inverse of each real number by writing ∀x ∃y (x + y = 0) but one needs second-order logic to assert the least-upper-bound property for sets of real numbers, which states that every bounded, nonempty set of real numbers ...

  7. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    The theorem states that if you have an infinite matrix of non-negative real numbers , such that the rows are weakly increasing and each is bounded , where the bounds are summable < then, for each column, the non decreasing column sums , are bounded hence convergent, and the limit of the column sums is equal to the sum of the "limit column ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. 0.999... - Wikipedia

    en.wikipedia.org/wiki/0.999...

    Part of what this argument shows is that there is a least upper bound of the sequence 0.9, 0.99, 0.999, etc.: the smallest number that is greater than all of the terms of the sequence. One of the axioms of the real number system is the completeness axiom, which states that every bounded sequence has a least upper bound.