Search results
Results From The WOW.Com Content Network
List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map and filter functions.
The basic rule for divisibility by 4 is that if the number formed by the last two digits in a number is divisible by 4, the original number is divisible by 4; [2] [3] this is because 100 is divisible by 4 and so adding hundreds, thousands, etc. is simply adding another number that is divisible by 4. If any number ends in a two digit number that ...
A Nivenmorphic number or harshadmorphic number for a given number base is an integer t such that there exists some harshad number N whose digit sum is t, and t, written in that base, terminates N written in the same base. For example, 18 is a Nivenmorphic number for base 10: 16218 is a harshad number 16218 has 18 as digit sum 18 terminates 16218
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m, for which n/m is again an integer (which is necessarily also a divisor of n). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n, then so is −m. The tables below only ...
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
In mathematics, the amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, s ( a )= b and s ( b )= a , where s ( n )=σ( n )- n is equal to the sum of positive divisors of n except n itself (see also divisor function ).
Given an integer n (n refers to "the integer to be factored"), the trial division consists of systematically testing whether n is divisible by any smaller number. Clearly, it is only worthwhile to test candidate factors less than n, and in order from two upwards because an arbitrary n is more likely to be divisible by two than by three, and so on.
For example, consider the number 100, whose divisors are these numbers: 1, 2, 4, 5, 10, 20, 25, 50, 100. When all possible divisors up to are tested, some divisors will be discovered twice. To observe this, consider the list of divisor pairs of 100: