When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).

  3. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.

  4. List of misnamed theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_misnamed_theorems

    Stokes' theorem. It is named after Sir George Gabriel Stokes (1819–1903), although the first known statement of the theorem is by William Thomson (Lord Kelvin) and appears in a letter of his to Stokes. The theorem acquired its name from Stokes' habit of including it in the Cambridge prize examinations. In 1854 he asked his students to prove ...

  5. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The theorem of de Rham shows that this map is actually an isomorphism, a far-reaching generalization of the Poincaré lemma. As suggested by the generalized Stokes' theorem, the exterior derivative is the "dual" of the boundary map on singular simplices.

  6. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    List of misnamed theorems; ... Abel–Ruffini theorem (theory of equations, ... Stokes's theorem (vector calculus, differential topology)

  7. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...

  8. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    The importance of Stokes' law is illustrated by the fact that it played a critical role in the research leading to at least three Nobel Prizes. [5] Stokes' law is important for understanding the swimming of microorganisms and sperm; also, the sedimentation of small particles and organisms in water, under the force of gravity. [5]

  9. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r , then the L -function L ( E , s ) associated with it vanishes to order r at s = 1 .