Search results
Results From The WOW.Com Content Network
Rural electrification systems tend to use higher distribution voltages because of the longer distances covered by distribution lines (see Rural Electrification Administration). 7.2, 12.47, 25, and 34.5 kV distribution is common in the United States; 11 kV and 33 kV are common in the UK, Australia and New Zealand; 11 kV and 22 kV are common in ...
The Shenyang trolleybus electrocution accident is an overhead power line electrocution accident involving public transport in Shenyang, the capital city of Liaoning province, Northeast China. The accident happened at 15:50 on August 12, 1998, when a trolley pole on a trolleybus stopping at a bus stop in the central Shenhe District slipped off ...
The study measured the electric field strength at the edge of an existing right-of-way on a 765 kV transmission line. The field strength was 1.6 kV/m, and became the interim maximum strength standard for new transmission lines in New York State. The opinion also limited the voltage of new transmission lines built in New York to 345 kV.
In 1985 overhead power line was built in Soviet Union between Kokshetau and the power station at Ekibastuz, this was a three-phase alternating current line at 1150 kV. In 1999, in Japan the first powerline designed for 1000 kV with 2 circuits were built, the Kita-Iwaki Powerline .
Long distance HVDC lines carrying hydroelectricity from Canada's Nelson River to this converter station where it is converted to AC for use in southern Manitoba's grid. A high-voltage direct current (HVDC) electric power transmission system uses direct current (DC) for electric power transmission, in contrast with the more common alternating current (AC) transmission systems. [1]
400 MVA 220/155 kV phase-shifting transformer.. A phase angle regulating transformer, phase angle regulator (PAR, American usage), phase-shifting transformer, phase shifter (West coast American usage), or quadrature booster (quad booster, British usage), is a specialised form of transformer used to control the flow of real power on three-phase electric transmission networks.
An example would be a distribution transformer with a delta primary, running on three 11 kV phases with no neutral or earth required, and a star (or wye) secondary providing a 3-phase supply at 415 V, with the domestic voltage of 240 available between each phase and the earthed (grounded) neutral point.
The masts of this line were designed for eventual upgrade to 380 kV. However the first transmission at 380 kV in Germany was on October 5, 1957 between the substations in Rommerskirchen and Ludwigsburg–Hoheneck. The world's first 380 kV power line was built in Sweden, the 952 km Harsprånget – Hallsberg line in 1952.