Search results
Results From The WOW.Com Content Network
When silicon (Si), having four valence electrons, is doped with elements from group III of the periodic table, such as boron (B) and aluminium (Al), both having three valence electrons, a p-type semiconductor is formed. These dopant elements represent trivalent impurities. Other trivalent dopants include indium (In) and gallium (Ga). [1]
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
1 part of ammonia water, (29% by weight of NH 3) 1 part of aqueous H 2 O 2 (hydrogen peroxide, 30%) at 75 or 80 °C [1] typically for 10 minutes. This base-peroxide mixture removes organic residues. Particles are also very effectively removed, even insoluble particles, since SC-1 modifies the surface and particle zeta potentials and causes them ...
Doping of a pure silicon array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as boron and antimony are introduced.. In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties.
The conductivity of semiconductors may easily be modified by introducing impurities into their crystal lattice. The process of adding controlled impurities to a semiconductor is known as doping. The amount of impurity, or dopant, added to an intrinsic (pure) semiconductor varies its level of conductivity. [26]
In semiconductor physics, the depletion region, also called depletion layer, depletion zone, junction region, space charge region, or space charge layer, is an insulating region within a conductive, doped semiconductor material where the mobile charge carriers have diffused away, or been forced away by an electric field. The only elements left ...
Samarium monophosphide SmP is a semiconductor with a bandgap of 1.10 eV, the same as in silicon, and electrical conductivity of n-type. It can be prepared by annealing at 1,100 °C (2,010 °F) an evacuated quartz ampoule containing mixed powders of phosphorus and samarium.
Typical values for semiconductor are at part per billion (ppb) for any specific contaminant by volume. This is an arbitrary definition and is frequently set by the user. Impurities in water are entrained into the steam as it is generated, and more may migrate into the steam from process piping materials as it is conducted to the process.