When.com Web Search

  1. Ad

    related to: discrete optimization techniques pdf free

Search results

  1. Results From The WOW.Com Content Network
  2. Discrete optimization - Wikipedia

    en.wikipedia.org/wiki/Discrete_optimization

    Discrete optimization is a branch of optimization in applied mathematics and computer science. As opposed to continuous optimization , some or all of the variables used in a discrete optimization problem are restricted to be discrete variables —that is, to assume only a discrete set of values, such as the integers .

  3. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. [1] [2] It is generally divided into two subfields: discrete optimization and continuous optimization.

  4. Combinatorial optimization - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_optimization

    A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.

  5. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  6. Test functions for optimization - Wikipedia

    en.wikipedia.org/.../Test_functions_for_optimization

    In the second part, test functions with their respective Pareto fronts for multi-objective optimization problems (MOP) are given. The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3]

  7. Derivative-free optimization - Wikipedia

    en.wikipedia.org/wiki/Derivative-free_optimization

    Derivative-free optimization (sometimes referred to as blackbox optimization) is a discipline in mathematical optimization that does not use derivative information in the classical sense to find optimal solutions: Sometimes information about the derivative of the objective function f is unavailable, unreliable or impractical to obtain.

  8. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    Branch and bound (BB, B&B, or BnB) is a method for solving optimization problems by breaking them down into smaller sub-problems and using a bounding function to eliminate sub-problems that cannot contain the optimal solution. It is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical ...

  9. Iterated local search - Wikipedia

    en.wikipedia.org/wiki/Iterated_local_search

    Iterated Local Search [1] [2] (ILS) is a term in applied mathematics and computer science defining a modification of local search or hill climbing methods for solving discrete optimization problems. Local search methods can get stuck in a local minimum, where no improving neighbors are available.