When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non- quantum mechanical description of a system of particles, or of a fluid , in cases where the velocities of moving objects are comparable to the speed of light c .

  3. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In relativistic quantum mechanics, it is the basis for constructing relativistic wave equations, since if the relativistic wave equation describing the particle is consistent with this equation – it is consistent with relativistic mechanics, and is Lorentz invariant.

  4. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    The following notations are used very often in special relativity: Lorentz factor = where = and v is the relative velocity between two inertial frames.. For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames.

  5. Relativistic quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_quantum_mechanics

    Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them (e.g. the Dirac or path-integral formalism) also work with special relativity.

  6. Special relativity - Wikipedia

    en.wikipedia.org/wiki/Special_relativity

    Special relativity corrects the hitherto laws of mechanics to handle situations involving all motions and especially those at a speed close to that of light (known as relativistic velocities). Today, special relativity is proven to be the most accurate model of motion at any speed when gravitational and quantum effects are negligible.

  7. Relativistic Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Lagrangian...

    The relativistic Lagrangian can be derived in relativistic mechanics to be of the form: = (˙) (, ˙,). Although, unlike non-relativistic mechanics, the relativistic Lagrangian is not expressed as difference of kinetic energy with potential energy, the relativistic Hamiltonian corresponds to total energy in a similar manner but without including rest energy.

  8. Relativistic angular momentum - Wikipedia

    en.wikipedia.org/wiki/Relativistic_angular_momentum

    In relativistic quantum mechanics, elementary particles have spin and this is an additional contribution to the orbital angular momentum operator, yielding the total angular momentum tensor operator. In any case, the intrinsic "spin" addition to the orbital angular momentum of an object can be expressed in terms of the Pauli–Lubanski ...

  9. Klein–Gordon equation - Wikipedia

    en.wikipedia.org/wiki/Klein–Gordon_equation

    The Dirac equation relativistic spectrum is, however, easily recovered if the orbital-momentum quantum number l is replaced by total angular-momentum quantum number j. [12] In January 1926, Schrödinger submitted for publication instead his equation, a non-relativistic approximation that predicts the Bohr energy levels of hydrogen without fine ...