When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.

  3. MacCormack method - Wikipedia

    en.wikipedia.org/wiki/MacCormack_method

    The application of MacCormack method to the above equation proceeds in two steps; a predictor step which is followed by a corrector step. Predictor step: In the predictor step, a "provisional" value of u {\displaystyle u} at time level n + 1 {\displaystyle n+1} (denoted by u i p {\displaystyle u_{i}^{p}} ) is estimated as follows

  4. Automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Automatic_differentiation

    Symbolic differentiation faces the difficulty of converting a computer program into a single mathematical expression and can lead to inefficient code. Numerical differentiation (the method of finite differences) can introduce round-off errors in the discretization process and cancellation. Both of these classical methods have problems with ...

  5. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.

  6. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  7. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !

  8. Central differencing scheme - Wikipedia

    en.wikipedia.org/wiki/Central_differencing_scheme

    Simpler to program, requires less computer time per step, and works well with multigrid acceleration techniques; Has a free parameter in conjunction with the fourth-difference dissipation, which is needed to approach a steady state. More accurate than the first-order upwind scheme if the Peclet number is less than 2. [3]

  9. Hermite interpolation - Wikipedia

    en.wikipedia.org/wiki/Hermite_interpolation

    In numerical analysis, Hermite interpolation, named after Charles Hermite, is a method of polynomial interpolation, which generalizes Lagrange interpolation.Lagrange interpolation allows computing a polynomial of degree less than n that takes the same value at n given points as a given function.