Search results
Results From The WOW.Com Content Network
In addition to the east (E) and west (W) neighbors, a general grid node P, now also has north (N) and south (S) neighbors. The same notation is used here for all faces and cell dimensions as in one dimensional analysis. When the above equation is formally integrated over the Control volume, we obtain
If a and b are integers in the range [0, N − 1], then their sum is in the range [0, 2N − 2] and their difference is in the range [−N + 1, N − 1], so determining the representative in [0, N − 1] requires at most one subtraction or addition (respectively) of N.
The computational domain is simply the physical region over which the simulation will be performed. The E and H fields are determined at every point in space within that computational domain. The material of each cell within the computational domain must be specified. Typically, the material is either free-space (air), metal, or dielectric.
The formulas +:= + and :=, which both hold in exact arithmetic, make the formulas +:= and +:= + mathematically equivalent. The former is used in the algorithm to avoid an extra multiplication by A {\displaystyle \mathbf {A} } since the vector A p k {\displaystyle \mathbf {Ap} _{k}} is already computed to evaluate α k {\displaystyle \alpha _{k}} .
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...
Spaces within a formula must be directly managed (for example by including explicit hair or thin spaces). Variable names must be italicized explicitly, and superscripts and subscripts must use an explicit tag or template. Except for short formulas, the source of a formula typically has more markup overhead and can be difficult to read.
On a log–linear plot (logarithmic scale on the y-axis), pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph.
In control theory, Ackermann's formula is a control system design method for solving the pole allocation problem for invariant-time systems by Jürgen Ackermann. [1] One of the primary problems in control system design is the creation of controllers that will change the dynamics of a system by changing the eigenvalues of the matrix representing the dynamics of the closed-loop system. [2]