Search results
Results From The WOW.Com Content Network
Lithium nitrate is an inorganic compound with the formula LiNO 3. It is the lithium salt of nitric acid (an alkali metal nitrate ). The salt is deliquescent , absorbing water to form the hydrated form, lithium nitrate trihydrate.
A recommended laboratory synthesis entails dehydrating nitric acid (HNO 3) with phosphorus(V) oxide: [11] P 4 O 10 + 12 HNO 3 → 4 H 3 PO 4 + 6 N 2 O 5. Another laboratory process is the reaction of lithium nitrate LiNO 3 and bromine pentafluoride BrF 5, in the ratio exceeding 3:1.
The choice of reactants is guided by a solubility chart or lattice energy. HSAB theory can also be used to predict the products of a metathesis reaction. Salt metathesis is often employed to obtain salts that are soluble in organic solvents. Illustrative is the conversion of sodium perrhenate to the tetrabutylammonium salt: [2]
Lithium nitrite is the lithium salt of nitrous acid, with formula LiNO 2. This compound is hygroscopic and very soluble in water. It is used as a corrosion inhibitor in mortar. [4] It is also used in the production of explosives, due to its ability to nitrosate ketones under certain conditions. [5]
Below lithium–halogen exchange is a step in the synthesis of morphine. Here n -butyllithium is used to perform lithium–halogen exchange with bromide. The nucleophilic carbanion center quickly undergoes carbolithiation to the double bond, generating an anion stabilized by the adjacent sulfone group.
The STG+ process uses standard catalysts similar to those used in other gas to liquids technologies, specifically in methanol to gasoline processes. Methanol to gasoline processes favor molecular size- and shape-selective zeolite catalysts, [2] and the STG+ process also utilizes commercially available shape-selective catalysts, such as ZSM-5. [3]
The gas mixture is cooled to 450 °C in a heat exchanger using water, freshly supplied gases, and other process streams. The ammonia also condenses and is separated in a pressure separator. Unreacted nitrogen and hydrogen are then compressed back to the process by a circulating gas compressor, supplemented with fresh gas, and fed to the reactor ...
Y-12 Plant, in Oak Ridge TN. In the US, several chemical exchange methods for lithium isotope separation have been under investigation in the 1930s and 1940s to develop a process for lithium-6 production, so that tritium could be obtained for thermonuclear weapons research.