Search results
Results From The WOW.Com Content Network
A homopolar generator is a DC electrical generator comprising an electrically conductive disc or cylinder rotating in a plane perpendicular to a uniform static magnetic field. A potential difference is created between the center of the disc and the rim (or ends of the cylinder) with an electrical polarity that depends on the direction of ...
A generator using permanent magnets (PMs) is sometimes called a magneto, or a permanent magnet synchronous generator (PMSG). Armature: The power-producing component of an electrical machine. In a generator, alternator, or dynamo, the armature windings generate the electric current, which provides power to an external circuit.
The key feature of the Ward Leonard control system is the ability to smoothly vary the speed of a DC motor, including reversing it, by controlling the field and hence the output voltage of a DC generator, as well as the field of the motor itself. As the speed of a DC motor is dictated by the supplied voltage, this gives simple speed control.
When the machine or motor is used as a motor, this EMF opposes the armature current, and the armature converts electrical power to mechanical power in the form of torque, and transfers it via the shaft. When the machine is used as a generator, the armature EMF drives the armature current, and the shaft's movement is converted to electrical power.
Main Wikipedia article: Gramme machine Description: Separate excitation of an electric generator. DC generator with commutation is shown, but the principle also applies to AC alternators. Page 175, Figure 183 Main Wikipedia article: Gramme machine Description: A one pole, two coil Gramme ring.
A DC motor is an electrical motor that uses direct current (DC) to produce mechanical force. The most common types rely on magnetic forces produced by currents in the coils. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current in part of the motor.
A diagram with multiple synchronous machine curves; open-circuit saturation curve is the leftmost one The open-circuit saturation curve (also open-circuit characteristic, OCC) of a synchronous generator is a plot of the output open circuit voltage as a function of the excitation current or field.
The circle diagram (also known as Heyland diagram or Heyland circle) is the graphical representation of the performance of the electrical machine [1] [2] [3] drawn in terms of the locus of the machine's input voltage and current. [4] It was first conceived by Alexander Heyland in 1894 and Bernhard Arthur Behrend in 1895.