Search results
Results From The WOW.Com Content Network
Single-cell omics technologies has extended beyond the transcriptome to profile diverse physical-chemical properties at single-cell resolution, including whole genomes/exomes, DNA methylation, chromatin accessibility, histone modifications, epitranscriptome (e.g., mRNAs, microRNAs, tRNAs, lncRNAs), proteome, phosphoproteome, metabolome, and more.
This single cell shows the process of the central dogma of molecular biology, which are all steps researchers are interested to quantify (DNA, RNA, and Protein).. In cell biology, single-cell analysis and subcellular analysis [1] refer to the study of genomics, transcriptomics, proteomics, metabolomics, and cell–cell interactions at the level of an individual cell, as opposed to more ...
Spatial transcriptomics, or spatially resolved transcriptomics, is a method that captures positional context of transcriptional activity within intact tissue. [1] The historical precursor to spatial transcriptomics is in situ hybridization, [2] where the modernized omics terminology refers to the measurement of all the mRNA in a cell rather than select RNA targets.
Another class of methods (e.g., scDREAMER [34]) uses deep generative models such as variational autoencoders for learning batch-invariant latent cellular representations which can be used for downstream tasks such as cell type clustering, denoising of single-cell gene expression vectors and trajectory inference.
A list of more than 100 different single cell sequencing (omics) methods have been published. [1] The large majority of methods are paired with short-read sequencing technologies, although some of them are compatible with long read sequencing.
While this is not a single-cell methodology, the 10 uM channels capture only 1-2 cells per square, generating near-single-cell resolution. The ADT sequences capture spatial proteomic information that can be compared to the transcriptomic data. Specific cell populations can be identified in two ways.
Videomics (or vide-omics): A video analysis paradigm inspired by genomics principles, where a continuous image sequence (or video) can be interpreted as the capture of a single image evolving through time through mutations revealing 'a scene'. Multiomics: Integration of different omics in a single study or analysis pipeline. [28]
Single-cell sequencing examines the nucleic acid sequence information from individual cells with optimized next-generation sequencing technologies, providing a higher resolution of cellular differences and a better understanding of the function of an individual cell in the context of its microenvironment. [1]