When.com Web Search

  1. Ad

    related to: rational numbers examples with solutions

Search results

  1. Results From The WOW.Com Content Network
  2. Rational number - Wikipedia

    en.wikipedia.org/wiki/Rational_number

    In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...

  3. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    Any rational number, expressed as the quotient of an integer a and a (non-zero) natural number b, satisfies the above definition, because x = ⁠ a / b ⁠ is the root of a non-zero polynomial, namely bx − a. [1] Quadratic irrational numbers, irrational solutions of a quadratic polynomial ax 2 + bx + c with integer coefficients a, b, and c ...

  4. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.

  5. Number theory - Wikipedia

    en.wikipedia.org/wiki/Number_theory

    An algebraic number is any complex number that is a solution to some polynomial equation () = with rational coefficients; for example, every solution of + (/) + = (say) is an algebraic number. Fields of algebraic numbers are also called algebraic number fields , or shortly number fields .

  6. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    For example, any irrational number x, such as x = √ 2, is a "gap" in the rationals Q in the sense that it is a real number that can be approximated arbitrarily closely by rational numbers p/q, in the sense that distance of x and p/q given by the absolute value | x − p/q | is as small as desired. The following table lists some examples of ...

  7. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    In terms of algebraic geometry, the algebraic variety of rational points on the unit circle is birational to the affine line over the rational numbers. The unit circle is thus called a rational curve, and it is this fact which enables an explicit parameterization of the (rational number) points on it by means of rational functions.

  8. Pell's equation - Wikipedia

    en.wikipedia.org/wiki/Pell's_equation

    These solutions may be used to accurately approximate the square root of n by rational numbers of the form x/y. This equation was first studied extensively in India starting with Brahmagupta , [ 1 ] who found an integer solution to 92 x 2 + 1 = y 2 {\displaystyle 92x^{2}+1=y^{2}} in his Brāhmasphuṭasiddhānta circa 628. [ 2 ]

  9. Algebraic equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_equation

    In mathematics, an algebraic equation or polynomial equation is an equation of the form =, where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, x 5 − 3 x + 1 = 0 {\displaystyle x^{5}-3x+1=0} is an algebraic equation with integer coefficients and