When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    It is particularly common when the equation y = f(x) is regarded as a functional relationship between dependent and independent variables y and x. Leibniz's notation makes this relationship explicit by writing the derivative as: [ 1 ] d y d x . {\displaystyle {\frac {dy}{dx}}.}

  3. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    [1] Assuming that has an inverse in a neighbourhood of and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at and have a derivative given by the above formula. The inverse function rule may also be expressed in Leibniz's notation. As that notation suggests,

  4. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.

  5. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    the partial differential of y with respect to any one of the variables x 1 is the principal part of the change in y resulting from a change dx 1 in that one variable. The partial differential is therefore involving the partial derivative of y with respect to x 1.

  6. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    2.1 Polynomial or elementary power rule. 2.2 Reciprocal rule. 2.3 Quotient rule. 2.4 Generalized power rule. 3 Derivatives of exponential and logarithmic functions.

  7. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    where the two variables x and y have been separated. Note dx (and dy) can be viewed, at a simple level, as just a convenient notation, which provides a handy mnemonic aid for assisting with manipulations. A formal definition of dx as a differential (infinitesimal) is somewhat advanced.

  8. Leibniz's notation - Wikipedia

    en.wikipedia.org/wiki/Leibniz's_notation

    Gottfried Wilhelm von Leibniz (1646–1716), German philosopher, mathematician, and namesake of this widely used mathematical notation in calculus.. In calculus, Leibniz's notation, named in honor of the 17th-century German philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols dx and dy to represent infinitely small (or infinitesimal) increments of x and y, respectively ...

  9. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    The exclusion of the expression (the case =) from our scheme of exponentiation is due to the fact that the function (,) = has no limit at (0,0), since approaches 1 as x approaches 0, while approaches 0 as y approaches 0. Thus, it would be problematic to ascribe any particular value to it, as the value would contradict one of the two cases ...