Ads
related to: how to figure kilowatt usage calculator formulaenergybillcruncher.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
For other units, make sure to use a corresponding conversion factor for the units. For example, if using Btu/kWh, use a conversion factor of 3,412 Btu per kWh to calculate the efficiency factor. For example, if the heat rate is 10,500 Btu/kWh, the efficiency is 32.5% (since 3,412 Btu / 10,500 Btu = 32.5%).
Using EPA 2018 Fuel Economy Guides assumptions for national average pricing of $2.56/gal regular gasoline and $0.13/kWh [42] we can calculate a vehicle that is rated at 84 MPGe or 40 kW/100 Mi efficiency and has a 16.5 kW EV battery of which 13.5 kWh is usable for electric driving with an advertised range of 33 miles per charge.
In electrical engineering the load factor is defined as the average load divided by the peak load in a specified time period. [1] It is a measure of the utilization rate, or efficiency of electrical energy usage; a high load factor indicates that load is using the electric system more efficiently, whereas consumers or generators that underutilize the electric distribution will have a low load ...
For example, an oversized motor - 15 kW - drives a constant 12 kW load whenever it is on. The motor load factor is then 12/15 = 80%. The motor above may only be used for eight hours a day, 50 weeks a year. The hours of operation would then be 2800 hours, and the motor use factor for a base of 8760 hours per year would be 2800/8760 = 31.96%.
Engine power is the power that an engine can put out. It can be expressed in power units, most commonly kilowatt, pferdestärke (metric horsepower), or horsepower.In terms of internal combustion engines, the engine power usually describes the rated power, which is a power output that the engine can maintain over a long period of time according to a certain testing method, for example ISO 1585.
As total energy consumption is in kilowatt hours and heating degree days are [no. days×degrees] we must convert watts per kelvin into kilowatt hours per degree per day by dividing by 1000 (to convert watts to kilowatts), and multiplying by 24 hours in a day (1 kW = 1 kW⋅h/h).