When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Scalar potential - Wikipedia

    en.wikipedia.org/wiki/Scalar_potential

    A familiar example is potential energy due to gravity. Vector field (right) and corresponding scalar potential (left). A scalar potential is a fundamental concept in vector analysis and physics (the adjective scalar is frequently omitted if there is no danger of confusion with vector potential). The scalar potential is an example of a scalar field.

  3. Vector potential - Wikipedia

    en.wikipedia.org/wiki/Vector_potential

    The vector potential admitted by a solenoidal field is not unique. If is a vector potential for , then so is +, where is any continuously differentiable scalar function. . This follows from the fact that the curl of the gradient is ze

  4. Magnetic vector potential - Wikipedia

    en.wikipedia.org/wiki/Magnetic_vector_potential

    The magnetic vector potential, , is a vector field, and the electric potential, , is a scalar field such that: [5] = , =, where is the magnetic field and is the electric field. In magnetostatics where there is no time-varying current or charge distribution , only the first equation is needed.

  5. Electromagnetic four-potential - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_four-potential

    It combines both an electric scalar potential and a magnetic vector potential into a single four-vector. [ 1 ] As measured in a given frame of reference , and for a given gauge , the first component of the electromagnetic four-potential is conventionally taken to be the electric scalar potential, and the other three components make up the ...

  6. Retarded potential - Wikipedia

    en.wikipedia.org/wiki/Retarded_potential

    Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]

  7. Liénard–Wiechert potential - Wikipedia

    en.wikipedia.org/wiki/Liénard–Wiechert_potential

    The Liénard–Wiechert potentials describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations , these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in ...

  8. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In advanced classical mechanics it is often useful, and in quantum mechanics frequently essential, to express Maxwell's equations in a potential formulation involving the electric potential (also called scalar potential) φ, and the magnetic potential (a vector potential) A. For example, the analysis of radio antennas makes full use of Maxwell ...

  9. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The electromagnetic four-potential is a covariant four-vector containing the electric potential (also called the scalar potential) ϕ and magnetic vector potential (or vector potential) A, as follows: = (/,).