Search results
Results From The WOW.Com Content Network
The formation of a brominated phenol (i.e. 2,4,6-tribromophenol) or aniline (i.e. 2,4,6-tribromoaniline) in form of a white precipitate indicates that the unknown was a phenol or aniline. The more unsaturated an unknown is, the more bromine it reacts with, and the less coloured the solution will appear.
Aniline (from Portuguese anil 'indigo shrub', and -ine indicating a derived substance) [6] is an organic compound with the formula C 6 H 5 NH 2. Consisting of a phenyl group ( −C 6 H 5 ) attached to an amino group ( −NH 2 ), aniline is the simplest aromatic amine .
2,4,6-Tribromoaniline is a brominated derivative of aniline with the formula C 6 H 4 Br 3 N. It is used in organic synthesis of pharmaceuticals, agrochemicals and fire-extinguishing agents. It is used in organic synthesis of pharmaceuticals, agrochemicals and fire-extinguishing agents.
4-Bromoaniline is a compound where an aniline molecule is substituted with a bromine atom on the para position. Commercially available, this compound may be used as a building block, e.g. in the preparation of monobrominated biphenyl via the Gomberg-Bachmann reaction .
The most commonly employed Sandmeyer reactions are the chlorination, bromination, cyanation, and hydroxylation reactions using CuCl, CuBr, CuCN, and Cu 2 O, respectively. More recently, trifluoromethylation of diazonium salts has been developed and is referred to as a 'Sandmeyer-type' reaction.
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
Brominating aniline with elemental bromine gives 2,4,6-tribromoaniline. This is then diazotized, then reacted with ethanol to replace the diazonium group with hydrogen, forming 1,3,5-tribromobenzene. [3] It has also been prepared by these methods: [3] replacement of the amino group of 3,5-dibromoaniline with bromine
Examples of activated aromatic rings are toluene, aniline and phenol. The extra electron density delivered into the ring by the substituent is not distributed evenly over the entire ring but is concentrated on atoms 2, 4 and 6, so activating substituents are also ortho/para directors (see below).