When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jordan curve theorem - Wikipedia

    en.wikipedia.org/wiki/Jordan_curve_theorem

    A Jordan curve or a simple closed curve in the plane R 2 is the image C of an injective continuous map of a circle into the plane, φ: S 1 → R 2. A Jordan arc in the plane is the image of an injective continuous map of a closed and bounded interval [a, b] into the plane. It is a plane curve that is not necessarily smooth nor algebraic.

  3. Curve - Wikipedia

    en.wikipedia.org/wiki/Curve

    A non-closed curve may also be called an open curve. If the domain of a topological curve is a closed and bounded interval = [,], the curve is called a path, also known as topological arc (or just arc). A curve is simple if it is the image of an interval or a circle by an injective continuous function.

  4. Jordan's theorem - Wikipedia

    en.wikipedia.org/wiki/Jordan's_theorem

    The Jordan curve theorem states that every simple closed curve has a well-defined "inside" and "outside";

  5. Curve orientation - Wikipedia

    en.wikipedia.org/wiki/Curve_orientation

    In the case of a plane simple closed curve (that is, a curve in the plane whose starting point is also the end point and which has no other self-intersections), the curve is said to be positively oriented or counterclockwise oriented, if one always has the curve interior to the left (and consequently, the curve exterior to the right), when ...

  6. Klein bottle - Wikipedia

    en.wikipedia.org/wiki/Klein_bottle

    One description of the types of simple-closed curves that may appear on the surface of the Klein bottle is given by the use of the first homology group of the Klein bottle calculated with integer coefficients. This group is isomorphic to Z×Z 2. Up to reversal of orientation, the only homology classes which contain simple-closed curves are as ...

  7. Inscribed square problem - Wikipedia

    en.wikipedia.org/wiki/Inscribed_square_problem

    The inscribed square problem, also known as the square peg problem or the Toeplitz' conjecture, is an unsolved question in geometry: Does every plane simple closed curve contain all four vertices of some square? This is true if the curve is convex or piecewise smooth and in other special cases.

  8. Borromean rings - Wikipedia

    en.wikipedia.org/wiki/Borromean_rings

    In mathematics, the Borromean rings [a] are three simple closed curves in three-dimensional space that are topologically linked and cannot be separated from each other, but that break apart into two unknotted and unlinked loops when any one of the three is cut or removed.

  9. Curve of constant width - Wikipedia

    en.wikipedia.org/wiki/Curve_of_constant_width

    In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform , the name given to these shapes by Leonhard Euler . [ 1 ]