When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Emissivity - Wikipedia

    en.wikipedia.org/wiki/Emissivity

    Emissivity of a body at a given temperature is the ratio of the total emissive power of a body to the total emissive power of a perfectly black body at that temperature. Following Planck's law , the total energy radiated increases with temperature while the peak of the emission spectrum shifts to shorter wavelengths.

  3. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    For example, white paint is quoted as having an absorptivity of 0.16, while having an emissivity of 0.93. [13] This is because the absorptivity is averaged with weighting for the solar spectrum, while the emissivity is weighted for the emission of the paint itself at normal ambient temperatures.

  4. Thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Thermal_radiation

    Due to reciprocity, absorptivity and emissivity for any particular wavelength are equal at equilibrium – a good absorber is necessarily a good emitter, and a poor absorber is a poor emitter. The temperature determines the wavelength distribution of the electromagnetic radiation.

  5. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The temperature Stefan obtained was a median value of previous ones, 1950 °C and the absolute thermodynamic one 2200 K. As 2.57 4 = 43.5, it follows from the law that the temperature of the Sun is 2.57 times greater than the temperature of the lamella, so Stefan got a value of 5430 °C or 5700 K. This was the first sensible value for the ...

  6. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    When there is thermodynamic equilibrium at temperature T, the cavity radiation from the walls has that unique universal value, so that I ν,Y (T Y) = B ν (T). Further, one may define the emissivity ε ν,X (T X) of the material of the body X just so that at thermodynamic equilibrium at temperature T X = T, one has I ν,X (T X) = I ν,X (T ...

  7. Effect of radiation on perceived temperature - Wikipedia

    en.wikipedia.org/wiki/Effect_of_radiation_on...

    The walls, ceiling, and floor are all at the same temperature. For an average person, the outer surface area is 1.4 m 2, the surface temperature is 30 °C, and the emissivity (ε) is 0.95. Emissivity is the ability of a surface to emit radiative energy compared to that of a black body at the same temperature. [2]

  8. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    Applying the Stefan–Boltzmann law, = (), where A and T are the body surface area and temperature, is the emissivity, and T 0 is the ambient temperature. The total surface area of an adult is about 2 m 2 , and the mid- and far-infrared emissivity of skin and most clothing is near unity, as it is for most nonmetallic surfaces.

  9. Wien's displacement law - Wikipedia

    en.wikipedia.org/wiki/Wien's_displacement_law

    Blacksmiths work iron when it is hot enough to emit plainly visible thermal radiation. The color of a star is determined by its temperature, according to Wien's law. In the constellation of Orion, one can compare Betelgeuse (T ≈ 3800 K, upper left), Rigel (T = 12100 K, bottom right), Bellatrix (T = 22000 K, upper right), and Mintaka (T = 31800 K, rightmost of the 3 "belt stars" in the middle).