When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Emissivity - Wikipedia

    en.wikipedia.org/wiki/Emissivity

    Emissivity of a body at a given temperature is the ratio of the total emissive power of a body to the total emissive power of a perfectly black body at that temperature. Following Planck's law , the total energy radiated increases with temperature while the peak of the emission spectrum shifts to shorter wavelengths.

  3. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The temperature Stefan obtained was a median value of previous ones, 1950 °C and the absolute thermodynamic one 2200 K. As 2.57 4 = 43.5, it follows from the law that the temperature of the Sun is 2.57 times greater than the temperature of the lamella, so Stefan got a value of 5430 °C or 5700 K. This was the first sensible value for the ...

  4. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    When there is thermodynamic equilibrium at temperature T, the cavity radiation from the walls has that unique universal value, so that I ν,Y (T Y) = B ν (T). Further, one may define the emissivity ε ν,X (T X) of the material of the body X just so that at thermodynamic equilibrium at temperature T X = T, one has I ν,X (T X) = I ν,X (T ...

  5. Effective temperature - Wikipedia

    en.wikipedia.org/wiki/Effective_temperature

    The effective temperature of the Sun (5778 kelvins) is the temperature a black body of the same size must have to yield the same total emissive power.. The effective temperature of a star is the temperature of a black body with the same luminosity per surface area (F Bol) as the star and is defined according to the Stefan–Boltzmann law F Bol = σT eff 4.

  6. Brightness temperature - Wikipedia

    en.wikipedia.org/wiki/Brightness_temperature

    Since the emissivity is a value between 0 and 1, the real temperature will be greater than or equal to the brightness temperature. At high frequencies (short wavelengths) and low temperatures, the conversion must proceed through Planck's law. The brightness temperature is not a temperature as ordinarily understood.

  7. Thermal emittance - Wikipedia

    en.wikipedia.org/wiki/Thermal_emittance

    Thermal emittance or thermal emissivity is the ratio of the radiant emittance of heat of a specific object or surface to that of a standard black body.Emissivity and emittivity are both dimensionless quantities given in the range of 0 to 1, representing the comparative/relative emittance with respect to a blackbody operating in similar conditions, but emissivity refers to a material property ...

  8. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    Schwarzschild's equation is the formula by which you may calculate the intensity of any flux of electromagnetic energy after passage through a non-scattering medium when all variables are fixed, provided we know the temperature, pressure, and composition of the medium.

  9. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    In slightly different terms, the emissive power of an arbitrary opaque body of fixed size and shape at a definite temperature can be described by a dimensionless ratio, sometimes called the emissivity: the ratio of the emissive power of the body to the emissive power of a black body of the same size and shape at the same fixed temperature. With ...