Ad
related to: derivative logarithmic functions calculator
Search results
Results From The WOW.Com Content Network
A corollary to this is that the logarithmic derivative of the reciprocal of a function is the negation of the logarithmic derivative of the function: (/) ′ / = ′ / / = ′, just as the logarithm of the reciprocal of a positive real number is the negation of the logarithm of the number.
In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] () ′ = ′ ′ = () ′.
The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): () ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.
The natural logarithm function, if considered as a real-valued function of a positive real variable, is the inverse function of the exponential function, leading to the identities: = + = Like all logarithms, the natural logarithm maps multiplication of positive numbers into addition: [ 5 ] ln ( x ⋅ y ) = ln x + ln y ...
The logarithmic derivative of the gamma function is called the digamma function; higher derivatives are the polygamma functions. The analog of the gamma function over a finite field or a finite ring is the Gaussian sums, a type of exponential sum. The reciprocal gamma function is an entire function and has been studied as a specific topic.
The digamma function (), visualized using domain coloring Plots of the digamma and the next three polygamma functions along the real line (they are real-valued on the real line) In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function: [1] [2] [3]
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...
representing the area between the rectangular hyperbola = and the x-axis, was a logarithmic function, whose base was eventually discovered to be the transcendental number e. The modern notation for the value of this definite integral is ln ( x ) {\displaystyle \ln(x)} , the natural logarithm.