Search results
Results From The WOW.Com Content Network
Basic Linear Algebra Subprograms (BLAS) is a specification that prescribes a set of low-level routines for performing common linear algebra operations such as vector addition, scalar multiplication, dot products, linear combinations, and matrix multiplication.
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm. The sum of the columns M1-M7 gives the same result as the full matrix multiplication on the left.
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
The lower bound of multiplications needed is 2mn+2n−m−2 (multiplication of n×m-matrices with m×n-matrices using the substitution method, m⩾n⩾3), which means n=3 case requires at least 19 multiplications and n=4 at least 34. [40] For n=2 optimal 7 multiplications 15 additions are minimal, compared to only 4 additions for 8 multiplications.
[1] [2] It is especially suitable for computers laid out in an N × N mesh. [3] While Cannon's algorithm works well in homogeneous 2D grids, extending it to heterogeneous 2D grids has been shown to be difficult. [4] The main advantage of the algorithm is that its storage requirements remain constant and are independent of the number of ...
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
Matrix chain multiplication (or the matrix chain ordering problem [1]) is an optimization problem concerning the most efficient way to multiply a given sequence of matrices. The problem is not actually to perform the multiplications, but merely to decide the sequence of the matrix multiplications involved.