Search results
Results From The WOW.Com Content Network
The equation of a circle is (x − a) 2 + (y − b) 2 = r 2 where a and b are the coordinates of the center (a, b) and r is the radius. Cartesian coordinates are named for René Descartes, whose invention of them in the 17th century revolutionized mathematics by allowing the expression of problems of geometry in terms of algebra and calculus.
A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. The set of the ordered pairs of real numbers (the real coordinate plane), equipped with the dot product, is often called the Euclidean plane or standard Euclidean plane, since every Euclidean plane is isomorphic to it.
Lines in a Cartesian plane, or more generally, in affine coordinates, can be described algebraically by linear equations. In two dimensions, the equation for non-vertical lines is often given in the slope-intercept form: = + where: m is the slope or gradient of the line. b is the y-intercept of the line.
In mathematics, a plane is a two-dimensional space or flat surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space, the definite article is used, so the Euclidean plane refers to the ...
A plane curve can often be represented in Cartesian coordinates by an implicit equation of the form (,) = for some specific function f.If this equation can be solved explicitly for y or x – that is, rewritten as = or = for specific function g or h – then this provides an alternative, explicit, form of the representation.
Plane equation in normal form. In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space. A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimal thin.
In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .
Lines in a Cartesian plane or, more generally, in affine coordinates, are characterized by linear equations. More precisely, every line L {\displaystyle L} (including vertical lines) is the set of all points whose coordinates ( x , y ) satisfy a linear equation; that is, L = { ( x , y ) ∣ a x + b y = c } , {\displaystyle L=\{(x,y)\mid ax+by=c ...